
136 Robin Gandy

happens next in a Turing machine or a polycellular automation has
a strictly local character .
Now it is time for me to come down off the fence-on both

sides .
1 . I think it conceivable that in fifty or a hundred years time

there will be machines of the tenth or twentieth generation which
in some areas of mathematics will be regarded by first-rate math-
ematicians as valuable colleagues (not merely assistants) . The ma-
chines will write papers, argue back when criticized, and will take
part in discussion on how best to tackle a new problem. This is
an updated version of the Turing Test . The conception raises an
important point . In his book Penrose asserts forcefully that con-
sciousness is essential to rational thought; I do not quite under-
stand what he means by consciousness . But machines of the kind
I am imagining would display the effects of consciousness-the
ability to concentrate attention on a particular part or aspect of
their input, the ability to reflect on and to alter the behaviour of
subsystems in their hierarchic structure, the ability to produce a
range of alternatives, and even, in a very restricted way, an ability
to adapt their social behaviour .

I remember a long time ago asking Donald MacKay what
sort of evidence or knowledge he thought would be required to
attribute consciousness to a computer ; he replied that it would
not primarily be a matter of using evidence and knowledge, but
a matter of having the nerve . If my fantasy becomes fact, people
will have the nerve .

z . Now for the other side of the fence . Even if machines of that
kind are built, discussions about them, explanations of their work-
ing, proposals for their improvement will (when not concerned
only with the lowest levels of this hierarchical structure) be carried
on not in terms of algorithms but in the same sort of terms as we
use-as I used-in discussing human intelligence and rational
thought . At a sophisticated level it is not practical, nor useful, nor
sensible to discuss intelligent behaviour solely in terms of algo-
rithms or machine programs; and this would remain true even if
there were some master program producing the behaviour .

g
The Church-Turing Thesis :

Its Nature and Status
ANTONY GALTON

1 . The Church-Turing thesis (CT), as it is usually understood,
asserts the identity of two classes of functions, the effectively
computable functions on the one hand, and the recursive (or
Turing-machine computable) functions on the other. In support
of this thesis, it is customary to cite the circumstance that all
serious attempts to characterize the notion of an effectively com-
putable function in precise mathematical terms have ended up
by defining the same class of functions, albeit in quite different
ways . Thus CT is supported by a series of theorems to the effect
that these various characterizations of effective computability (viz .
Turing-machine computability, general recursiveness, A-definability,
Markov algorithm computability, and the rest) are extensionally
equivalent .
Open any text on the theory of computing at the point where

CT is discussed. You will find there a statement to the effect that
CT is not a theorem, and thus cannot be proved, because one of
the terms it contains, namely `effectively computable', cannot be
defined precisely, but rather refers to our vague, intuitive idea of
what constitutes computability . This special character of CT as
not susceptible to formal verification was already recognized by
Church and Turing .' Thus Church (1936), in defining the notion

' Even before Church and Turing, Godel had considered what may be thought
of as a precursor to CT, that the class of functions computable by means of a finite
procedure was coextensive with the class of recursive functions, where however
Godel does not (in contradistinction to Church) provide a precise definition of the
latter class . Most pertinent for our present concern is Godel's remark that this
thesis `cannot be proved, since the notion of finite computation is not defined, but
it serves as a heuristic principle' (Godel, 1934 : P . 44) .

138

	

Antony Galton

of an effectively calculable function of positive integers, remarks
that

This definition is thought to be justified by the considerations which
follow, so far as positive justification can ever be obtained for the selec-
tion of a formal definition to correspond to an intuitive notion .

Turing (1936), similarly, notes that

[a]ll arguments which can be given [for CT] are bound to be, funda-
mentally, appeals to intuition, and for this reason rather unsatisfactory
mathematically. (p . 249)

Despite this, it is almost universally admitted that the equivalence
theorems mentioned above, together with various other considera-
tions such as Turing's own account of his motivation for the
detailed definition of his machines, constitutes evidence for CT.
The suppositions that (a) CT does not admit rigorous proof, and
(b) there exists evidence to support it, suggest that CT is more like
a proposition of natural science than of mathematics, and thus
properly to be regarded as an empirical hypothesis, even though
its subject-matter appears to be mathematical in character .

2 . Let us examine more closely the idea that certain considera-
tions, both formal and informal, constitute evidence for CT. Evid-
ence for a thesis means evidence that the thesis is true ; so if it is
to be meaningful to adduce evidence for CT, it must at least have
a chance of being true . But has it? Doubt has been cast on this by
Wang (1974

One often hears that in mathematical logic a sharp concept has been
developed which corresponds exactly to our vague intuitive notion of
computability . But how could a sharp notion correspond exactly to a
vague notion?

Wang's own solution to this difficulty is to say that

[a] closer look reveals that the sharp notion . . . is actually not as sharp
as it appears at first sight . (p . 83)

In Wang's view, then, it would appear that the CT really asserts
the identity not of a sharp notion with a vague one, but of two
vague ones . This will hardly do, though, because, even if Wang is
correct in saying that the formal notion is not as sharp as one
would like, there can surely be no denying that it is very much

The Church-Turing Thesis 139
sharper than our `vague, intuitive' notion . And this leaves us
with the problem of how two notions of very different degrees
of imprecision can actually be equivalent.

If, as these last remarks suggest, CT is not even something that
could possibly be true, then either we must modify it so that it no
longer suffers from this defect, or we must revise our views as to
its status .

3 . Let us take it that the form of CT is aRb, where a is the vague,
intuitive term (`effective computability'), b is the precise mathem-
atical term (recursiveness, Turing-machine computability, or what
have you), and R expresses the relation that is said to hold between
them . In what I shall call the classical formulation of CT, a and
b denote classes-the class of effectively computable partial func-
tions from the natural numbers to the natural numbers, and the
class of general recursive functions, respectively-and R is the
identity relation . The thesis, on this interpretation, thus asserts
that two classes of functions are identical . The unease we noted
above arose from the fact that a is not well-defined, whereas b is,
or at least much more nearly so, and hence cannot be meaning-
fully equated to a .
One obvious way in which we might try to alleviate this un-

easiness is by redefining the role of the relational term R . Instead
of regarding CT as an assertion that two classes are identical, we
might regard it as having a stipulative force, in effect defining
,effective computability' to be the same as recursiveness .
This way of looking at the matter is suggested by some formu-

lations of the thesis that one finds in the literature . Hermes (1965),
for example, speaks of suggestions to `make precise' the concept
of algorithm and related concepts (including, by implication, effec-
tive computability),' while Minsky (1967) speaks of `the thesis
that Turing's notion of computability is an acceptable technical
counterpart of our intuitive notion of effective computability' . This
stipulative understanding of CT is also compatible with Church's
original formulation, which uses the idea of `correspondence' .

z Note, incidentally, that Hermes later on comes closer to what I called the
classical formulation, when he speaks of the `identification of the originally intuit-
ively given concept of algorithm with a certain, exactly defined concept' . Likewise,
Kleene (195z) explicitly countenances both interpretations when he says that CT
`may be considered a hypothesis about the intuitive notion of effective calculability
or a mathematical definition of effective calculability' (pp . 318 f.) .

140

	

Antony Galton

Turing's formulation, on the other hand, is less readily inter-
pretable in this way . His claim is that

the [Turing machine] computable numbers include all numbers which
could naturally be regarded as computable .' (p . 249)

The fact that Turing is here concerned with the computability of
numbers rather than of functions need not worry us in this con-
text : in Turing's treatment, a real number is in any case identi-
fied with the function which maps each positive integer n onto the
nth place in the decimal expansion of that number. If we assume
that Turing would have regarded all Turing-machine computable
numbers (or functions) as computable in the intuitive (`natural')
sense, it is hard to avoid reading Turing here as asserting the
identity of two classes, in other words as stating the classical
formulation of CT.

4 . If we do opt for the weaker, stipulative interpretation, accord-
ing to which recursiveness or an equivalent is proposed as a re-
placement for our ill-defined intuitive notion of computability, what
follows? In effect, CT sets bounds on what we can reasonably set
out to achieve computationally . It tells us not to waste our time
looking for general solutions to the halting problem and other
recursively unsolvable problems .
Now the trouble with taking CT purely stipulatively like this is

that it does not supply us with a reason why we should regard
certain prima-facie computable problems as off limits . The classical
formulation of CT yields the same advice, and at the same time it
gives us a reason for following that advice, namely it is a waste of
time looking for general solutions to recursively unsolvable prob-
lems precisely because no solutions exist . This last move can only
be made on the classical formulation, because only the classical
formulation takes seriously the idea that there is such a thing as
the class of all effectively computable functions, even if we cannot
characterize it precisely independently of CT itself.

I take it that these considerations imply that the stipulative
interpretation of CT, however attractive it may seem at first sight,
cannot be seriously upheld . At best, it is arbitrary, and at worst
incoherent . Let us then assume that the classical formulation is

s Turing (1936), my italics .

The Church-Turing Thesis

correct in so far as it asserts an identity between two classes of
functions . By `correct' here I mean that if there is to be a coherent
statement of CT at all then it must be along these lines, however
much modified in detail from the classical version . This still leaves
us with the tension we noted earlier, arising from the impossibility
we thought we discerned in the idea of equating a vague notion
with a precise one.
The obvious remedy, if only it could be achieved, would be to

try to sharpen the vague term (a) in the identity . But this seems
impossible to do without begging the question : after all, as already
remarked, every serious attempt to give a precise characterization
of a has resulted in a formal notion of computability that is prov-
ably equivalent to recursiveness, the various proofs of equivalence
being precisely what is held up as the main supporting evidence
for the thesis . We thus seem to have the curious circumstance of
a corpus of exact mathematical results being held up as evidence
for a thesis which it is impossible to state clearly while maintain-
ing its distinctness from those results .'

In the next two sections I consider what happens if we try
to sharpen the intuitive notion a in the thesis without going so far
as to define something that is already provably equivalent to the
sharp term b. Note that there is an air of paradox about this plan:
I am deliberately setting out to produce a formulation of CT that
stands a chance of being true but which cannot be proved . The
improvability is necessary here, for an attempted formulation which
could be proved would no longer be CT, but a piece of evidence
for the `real' CT-if such a thing exists . So my aim here is to see
whether or not CT can be coherently formulated at all .

5 . Gandy (1988) has argued that, contrary to received opinion,
CT is a theorem, which he states in the following form :

Turing's Theorem : Any function which is effectively calculable by an
abstract human being following a fixed routine is effectively calculable
by a Turing machine . . . and conversely . (p . 83)

' Kalmar (1959 : 79) regards this as a reason for rejecting CT: `There are pre-
mathematical concepts which must remain pre-mathematical ones, for they cannot
permit any restriction imposed by an exact mathematical definition . Among these
belong . . . such concepts as that of effective calculability, or of solvability, or of
provability by arbitrary correct means, the extension of which cannot cease to
change during the development of Mathematics .'

142

	

Antony Galton

But in order for this to be a theorem in the mathematical sense, a
determinate proposition capable of being definitively proved, the
terms occurring in it must all be definable in a precise way; in
particular we need a precise definition of the term `abstract human
being' . If this is defined by means of a purely mathematical con-
struction, the question arises how the computational power of this
construction is related to that of real human beings, or real comput-
ing machines : in effect the core issue addressed by CT is pushed
back, with Gandy's a term (`abstract human-being computability')
becoming the new b term, the new a term reverting once more to
the original imprecisely formulated notion of effective computability .

If, on the other hand, the notion of an abstract human being
is not defined in such a way as to allow `Turing's theorem', as
stated by Gandy, to be proved, then it does not seem correct to
call this formulation a theorem. If an abstract human being is
obtained from a real human being by abstracting away 'the-very
important-practical limitations on time and space' (Gandy, 1988:
83), then Gandy's version of CT begins to look very much like an
empirical hypothesis about the computational powers of human
beings . More often, though, CT has been understood as making
a broader claim, about what any entity, real or abstract, can
compute, not specifically about human beings . Thus while Gandy's
formulation, in which the a term is made more precise without
however becoming provably equivalent to the b term, is a step in
the direction we have set ourselves to explore, it is arguably not
general enough to play the role traditionally assigned to CT, that
of defining the limits to computation in general .

If now we consider the various formal notions that have been
used as the second, precise term of CT, i .e . recursiveness, Turing-
machine computability, A-definability, etc ., we note that each of
them gives us a computationally specific way of defining func-
tions . By this I mean that each of them characterizes a class of
computable functions by giving us a framework within which
we can actually compute them . The Turing machine model of
computability, for example, provides a precise specification of the
class of all Turing machines . Each Turing machine does the job of
computing the values for a particular function . Likewise, the scheme
of primitive recursion plus the p-operator shows us how to con-
struct individual function definitions which we can use to compute
values of the functions thereby defined .

The Church-Turing Thesis

	

143
My point here is that each of the formal notions provides a

realization or implementation of the general notion of a com-
putable function . Now the complement, as it were, of implemen-
tation is specification . A specification is precise about what is
wanted but is silent on how it is to be achieved ; an implementa-
tion does not in itself tell us what it gives us, but it is explicit
about how it does it . And the relation between specification and
implementation is, ideally, that a specification is correctly realized
by an implementation .

If, then, we regard the specific models of computation which
belong on the right-hand side of CT as implementations, then
what goes on the left-hand side must be a specification . But so far,
it is only a vague specification-that is the root of our problem .
What we need to do is to put down the specification precisely :
after all, a specification ought to be no less precise, in its own
way, than an implementation, the difference being that, as already
indicated, what they are precise about are quite different things .
Our task, then, is to find a precise term which can stand in

relation to recursiveness and its formal equivalents as specification
to implementation . We require a notion of computation which is
precise as to what sort of thing results from a computation but is
vague as to how it is achieved . To this end I propose to examine
the following notion of black-box computability :

A partial function f from the natural numbers to the natural numbers
is black-box computable if there could exist a black box with input and
output ports and a representation scheme for natural numbers, such that
for each natural number n, when the representation of n is fed into the
input port of the black-box then, if f(n) is defined, its representation will
eventually emerge from the output port, whereas if f(n) is not defined,
either nothing will ever emerge, or what emerges is not the representation
of a natural number using the specified scheme .

This definition says nothing at all about the nature of the mech-
anisms inside the black box: anything will do, so long as the
outward behaviour of the box is as specified . Thus black-box com-
putability is defined in a very different way from Turing-machine
computability, for which the details of the mechanism are crucial
(even though to some extent arbitrary in the sense that they can
be changed without affecting the notion of computability thereby
defined) .

144

	

Antony Galton

6 . The 'black-box formulation' of CT is that the class of black-
box computable functions is equal to the class of recursive func-
tions . In effect, this version of the thesis states that whatever
mechanism a particular black box contains, it can be replaced by
a Turing machine without altering its functional specification .

Is the black-box formulation of CT precise enough to avoid the
incoherence we imputed to the classical formulation? It is surely
not yet perfectly precise . A conspicuous source of vagueness lies in
the use of the words `there could exist' . In order to make precise
what is meant here, we should need to specify exactly what space
of possibilities is intended .
To appreciate the problems involved in doing this, consider

the following black box . It is simply a form of universal Turing
machine. But it has a special property : in any computation that it
performs, the first step takes one second, and each subsequent
step takes half the time of the one that precedes it . When a nu-
merical encoding of any given Turing-machine/tape pair (M, T)
is presented to the input port of the black box, the black box
immediately proceeds to simulate the computation that would occur
if the Turing machine M were to be activated with initial tape-
configuration T . If the simulation reaches a `halt' state after a
finite number of steps, the black box halts and delivers the output
i (meaning that the computation specified by the input termin-
ates) . But if after two seconds the simulated computation has not
reached a `halt' state, then the black box halts and delivers the
output o (meaning that the computation specified by the input
does not terminate) .

Clearly, this black box solves the halting problem for Turing
machines . Does this mean that the halting problem (or rather,
the corresponding numerical function) is black-box computable?
It all depends on the space of possibilities underlying the require-
ment that an appropriate black box `could exist' . The black box
I have described could not exist in physical form in our universe,
although one can, perhaps, conceive of alternative possible uni-
verses in which it could: it is, after all, mathematically consistent .
When we describe an abstract model of computation, it is custom-
ary to insist that it produce its result after only finitely many steps,
because only in this case can the abstract process be realized
physically : ultimately what interests us is the actual physical
computations .

The Church-Turing Thesis 145
It therefore seems reasonable to introduce constraints into

our understanding of what is possible so that the black boxes
referred to in the definition of black-box computability could exist
physically . If we do this, though, do we have any reason to sup-
pose that there will be any correspondence between black-box
computability and Turing-machine computability? For on the one
hand, to quote Deutsch (1985 : 1o i), `there is no a priori reason
why physical laws should respect the limitations of the mathemat-
ical processes we call "algorithms"', which suggests that the intro-
duction of physical considerations, so far from being a limitation,
might allow us to go beyond the bounds of Turing-machine com-
putability. And on the other hand, to quote Deutsch again,

[n]or, conversely, is it obvious a priori that any of the familiar recursive
functions is in physical reality computable . The reason why we find it
possible to construct, say, electronic calculators, and indeed why we can
perform mental arithmetic, cannot be found in mathematics or logic . The
reason is that the laws of physics 'happen to' permit the existence of
physical models for the operations ofarithmetic such as addition, subtrac-
tion and multiplication . If they did not, these familiar operations would
be non-computable functions. We might still know of them and invoke
them in mathematical proofs (which would presumably be called 'non-
constructive') but we could not perform them . (p . ioi)

Even if we suppose that there is sufficient harmony between
the physical world and the abstract world of mathematical logic
for arbitrary Turing machines or their equivalents to be constructible
in principle, it will still be the case that many, indeed most, Turing-
machine computable functions will fail to be black-box comput-
able, because the resources they require exceed the capacity of the
physical world to supply them . After all, even so simple a function
as addition can only be computed physically for arguments up to
a certain size, and there must certainly exist infinitely many Turing-
machine computable functions for which the computation for any
argument(s), using Turing machines or their equivalent, exceeds
the resource bounds imposed by the physical world . If CT is right,
these functions cannot be computed by any physical means at all .

Unfortunately, it seems impossible to specify the physical con-
straints on our black box in a non-arbitrary way. What we say
here must clearly be influenced by the current state of our know-
ledge of the extent of the physical world, both in the large and in

146

	

Antony Galton

the small, and also by our current technological capacities . As
Enderton (1977) puts it,
A person with a digital computing machine may regard a function f
as being computable only when f(x) is computable on his machine in a
reasonable length of time . Of course, the matter of what is reasonable
may change from day to day. And next year he hopes to get a faster
machine with more memory space and tape drives. At that time, his idea
of what is computable in a practical sense will be extended considerably .
The class of effectively computable functions is obtained in the ideal

case where all of the practical restrictions on running time and memory
space are removed . Thus the class is a theoretical upper bound on what
can ever in any century be considered computable . (pp . 529 f.)

Enderton here endorses the traditional view that purely physical
considerations are not generally considered to be a part of the
theory of computability .

But this has the result that CT, as ordinarily formulated, tends
to be seen as irrelevant to the issue of defining what can or cannot
be computed in practice. To quote von Neumann (1961),

Throughout all modern logic, the only thing that is important is whether
a result can be achieved in a finite number of elementary steps or not .
The size of the number of steps which are required, on the other hand,
is hardly ever a concern of formal logic . Any finite sequence of correct
steps is, as a matter of principle, as good as any other In dealing with
automata, this statement must be significantly modified . In the case of an
automaton the thing which matters is not only whether it can reach a
certain result in a finite number of steps at all but also how many such
steps are needed . (p . 303)

We thus find, in conventional computability theory, on the one
hand the requirement that a computation be completed in finitely
many steps, and on the other hand the lack of any constraint on
the complexity of a computation . The justification for the former
requirement is that infinite computations cannot actually be imple-
mented physically ; the justification for the latter non-requirement
is that our theory of computation is purely abstract and hence
should not be constrained by physically motivated considerations .
There is a tension here which needs to be resolved if CT is to be
seen as having direct relevence to practical computational issues .
What is required here is an answer to what is perhaps the central
question in all this, namely : when is a computation procedure
effective?

The Church-Turing Thesis

	

147

Even if we do not insist that the black box should be able to
exist and perform its computations physically, one might sup-
pose, pace Deutsch, that this condition should be sufficient in
the sense that the possibility of physical realization should qualify
a black box for the role required of it in the black-box formula-
tion of CT. But as J . R . Lucas pointed out in discussion (see this
volume, p . 104), there would be no reason, on this supposition,
to disqualify a black-box which contained a human being who is
responsible for deciding what output to give in response to each
input . If we accept this (in effect allowing that the black box might
be a person), then the black-box formulation of CT becomes iden-
tical with the (`strong AI') thesis that people too are subject to all
the limitations of Turing machines, a position which Lucas himself
has consistently argued against .
A more modest formulation of black-box computability seems to

be in order . What further constraints should we add? One possib-
ility is to insist that we can, in principle, construct the black box.
This amounts to a substantial limitation inasmuch as we have
no idea how to set about constructing a black box that is in any
relevant sense equivalent to a person . But in `we can construct'
there appears once again a `can', and we have to ask more closely
just what sort of possibility or potentiality we require here .
One obvious answer is that there should be an effective pro-

cedure for constructing the black box . But if we insist on this
then the black-box formulation of CT becomes circular : a function
is effectively computable if and only if there is an effective pro-
cedure for constructing a black box which will compute it (cf .
Peter's argument against the classical formulation of CT, discussed
below) . In order to break out of the circle we need to define what
we mean by effective, and this is just what we were originally
trying to use CT to tell us .

Suppose now we try to pin down what we mean by calling
a black box effectively constructible by specifying what sorts of
operations are to be allowed in the construction of it . At this
point we would be well on the way to converting what we intended
as a completely general specification of a computational model into
a specific implementation . In short, we are following the same path
as Turing when he originally invented Turing machines .
We thus find that while there is something very attractive

about the notion of a black box standing in relation to a class of

Antony Galton

particular models of computation as specification to implementa-
tions, it is extremely hard to make the specification precise with-
out converting it into one of those implementations . This is a
situation curiously reminiscent of that prevailing in artificial
intelligence (AI) . It has often been claimed that the classical
'specify-and-verify' methodology advocated in software engineer-
ing is inappropriate to AI precisely because it is not possible in AI
to specify in advance the behaviour (essentially some aspect(s) of
human behaviour) that one is attempting to realize computationally .
Instead, proponents of AI tend to favour a methodology of
,exploratory programming', in which the programming process is
guided by the programmers' confidence that although they cannot
specify in advance the behaviour they are aiming for, they will at
any rate recognize it when they see it . In a similar way, one might
say of CT that even though one cannot give a general characteri-
zation of what sort of thing is to count as a computation, one
might be able to recognize, informally, that such-and-such a spe-
cific formal model of computation succeeds in capturing that notion
precisely .

7 . In order to clarify the status of CT, a good plan would be
to consider in what ways the thesis might come to be discredited .
We may discount here the remote possibility that the proofs of
equivalence for the various formal notions of computability might
turn out to be flawed, thereby undermining the chief mathemat-
ical grounds for accepting CT. If this were to happen, CT would
in effect be broken up into a collection of rival theses, each stat-
ing that a function is computable if and only if it has a certain
formal property, viz . Turing-machine computability, recursiveness,
computability by a normal Markov algorithm, and so on . The big
question then would be which, if any, of these rival theses was
correct .
We assume in what follows that we do have a robust formal

notion of computability, and the question at issue concerns the
relationship between this formal notion and our intuitive notion
of computability . Here we are primarily concerned with the pos-
sibility that CT may come to require revision . We can envisage
two kinds of revision, which differ according to whether it is the
`a' term in the `aRb' presentation of the thesis that is changed, or
the `b' term. Revision of the former kind amounts to conceptual

The Church-Turing Thesis 149
revision, because it involves a shift in what we want to understand
by the notion of effective computability. To advocate conceptual
revision of CT is not necessarily to stigmatize the older version of
the thesis as false, but only to recommend the replacement as in
some way more appropriate or relevant to one's needs . Revisions
of the second kind, however, are substantial, since they do directly
contradict the version that is replaced : whereas the older version
identifies the effectively computable functions with the recursive
functions, the replacement identifies the same set of effectively
computable functions with some other class .
We can also classify possible revisions of CT according to whether

they postulate that the class of computable functions is more or
less inclusive than in the classical version . We may speak of upward
and downward revisions respectively .

8 . Substantial revision of CT would be necessitated if someone
were either to discover an effective method for computing some
function that is demonstrably not recursive (upward substantial
revision), or if it were to be shown that not all recursive func-
tions were effectively computable after all (downward substantial
revision) .
Downward substantial revision hardly seems possible, since

we already know how to specify a black box to compute any
given recursive function : it is called a Turing machine. We must
not be too hasty, however . To be sure, if we construct a Turing
machine, then it is reasonable to claim that the function it com-
putes is effectively computable . To extrapolate from this observa-
tion to the notion that an arbitrary function can be regarded as
effectively computable if and only if there exists a Turing machine
which can compute it, however, is not necessarily legitimate . The
problem, as was pointed out by Peter (1959) is that the notion of
existence represented by the phrase `there is' has to be defined
constructively in order for it to play the role required of it in
this formulation of CT: we need to insist, in other words, that we
can effectively construct a Turing machine to do the job . But we
cannot insist on this without circularity, since the whole purpose
of CT is to provide a definition of the notion of effectiveness .

In order to avoid this circularity, the best we can do is to restrict
our notion of effective computability to cover those classes of
functions for whose Turing machines we have up to now discovered

150

	

Antony Galton

effective constructions . But to do this is, in effect, to propose a
substantial downward revision of CT, albeit one for which no
universality can be claimed, since it is not possible to predict what
advances may be made in our ability to specify effective methods
for constructing Turing machines .

If we reject this argument (and it is surely not totally com-
pelling), then the only other way in which downward revision of
CT could occur would be if we were to argue that some Turing-
machine computations, for example those which require exponen-
tial time, do not really count as computations . But this would be a
conceptual revision of CT, not a substantial one . We shall consider
this case in its proper place .
Upward revision of the thesis, on the other hand, could be

genuinely substantial, involving the discovery of a new technique .
Of course, we cannot say what such a technique would be, though
we might suspect that the appropriate direction to look would
be in the area of either analogue computation or connectionism .
We do not yet know enough about the formal relations between
these two kinds of computation and ordinary digital computation
for us to be able to rule such a discovery out of court. A few
general observations are possible, however .
Suppose someone presents us with a black box which he claims

can solve the halting problem for Turing machines . If this claim is
true, then the black box can compute a function which no Turing
machine can, a non-recursive function . But if the black box can com-
pute it, then it must be computable, in our informal intuitive
sense . Hence CT is false .
That is the claim made by the person who made the box . But why

should we accept it? How do we know that the black box really
does solve the halting problem? We might try it out on a large num-
ber of examples for which we already know the answer, and find
that in every case the correct result appears . But this does not prove
that the machine has the capacity claimed for it . For what is claimed
is that the black box will correctly determine termination or non-
termination for every possible machine/tape pair . Nothing short
of this will do : after all, we already have respectable recursive
techniques for testing large classes of algorithms for termination,
and there is no reason to suppose that such techniques could not
be adapted to Turing machines instead . What we lack, and this
black box purports to provide, is a general technique .

The Church-Turing Thesis

	

151

How could the owner of the black box convince us that it does
what he claims it does? Only by revealing to us its mechanism . Un-
less he can prove that what goes on inside the box is always such
as to lead from an input machine/tape pair to a correct determi-
nation of whether or not the corresponding computation terminates,
we have no reason whatever for accepting his claim .

In saying this, I am in no way prejudging the issue as to what
kind of thing is going on inside the box . However, since both
the input and output are in discrete, digital form, it is natural to
expect that the inner workings of the box will have this form
too . In that case what goes on in the box must be a sequence of
operations (or perhaps a set of such sequences in parallel) . This
sequence can, presumably, be broken down into a set of primitive
operations together with a set of controlling principles which
govern the way in which the primitive operations are combined
to yield the completed sequence . Some of these operations and
controlling principles will doubtless be things that can be performed
by a Turing machine, but at least one of them must be beyond the
capability of such a machine.
Now one is inclined to think that a primitive operation must

be rather simple . Turing's original construction of his machine was
motivated by a close analysis of all the possible processes which
might form part of any computational technique. Here we are pos-
tulating the existence of some simple operation that Turing missed ;
something sufficiently unobvious for all subsequent researchers to
have missed too . It does not seem very likely, but on the other hand
we cannot entirely rule out the possibility . In this connection,
Webb (1983, p. 337) has pointed out that the only plausible can-
didate for an effective operation that might be expected to take
us beyond the realm of the recursive, namely diagonalization,
actually fails to do so, inasmuch as the class of general recursive
functions is closed under this operation .

But perhaps we are begging the question in assuming that the
mechanism inside the box has to be analysable into a sequence of
discrete steps . Perhaps it is an essentially continuous process which
cannot be redescribed in discrete terms, even though its input and
output are both discrete . We enter here the realm of speculation
and it is very difficult at this stage to say much about what may
or may not be possible .
But if such a discovery were to be made, there would be a need

152

	

Antony Galton

for us, as upholders of CT, to respond in some way to it . The
more conservative approach would be to insist that the new dis-
covery just doesn't count as a case of black-box computability, for
example because the relevant internal mechanism of the box is
not discrete . This would amount to a conceptual revision of CT,
and properly belongs in the next section . It would enable us to
retain our faith in CT, but is somewhat desperate, and tanta-
mount to a rejection of the black-box formulation of the thesis,
since it replaces black-box computability by discrete black-box
computability .
A more radical response would be to try to revise CT to accom-

modate the new technique . This would require us to try to extend
the formal term, i .e . to look for a new formal account of compu-
tation which coincides in extension with the enhanced notion of
computability provided by the new computation techniques . Once
again, it is impossible for us to say, at our present state of know-
ledge, what such a formal account would look like .

9 . We now turn to conceptual revisions of CT. As I remarked in
the previous section, downward conceptual revision of CT would
occur if, as is perfectly possible, we came to embrace a notion of
effective procedure that incorporated a resource bound, such as
polynomial time, as an intrinsic part .
To some extent, this has already happened, in that it is com-

mon to regard as feasible only those computations which can be
performed in polynomial time . So an exponential algorithm, on
this view, is not an effective procedure . We could justify adopt-
ing this line on the grounds that feasibility, as here defined, is, like
recursiveness, a robust notion, that is, it remains constant over a
wide range of possible modifications of technique and representa-
tion (cf. Harel, 1987) .

Suppose then that computer scientists very generally came to
accept that a function is effectively computable if and only if
it can be computed by a black box in polynomial time . Let us
call this polynomial black-box computability . If we simply sub-
stitute polynomial black-box computability for black-box com-
putability tout court in our black-box formulation of CT, we
would obtain the thesis that polynomial black-box computability
is equivalent to Turing-machine computability . But this is highly
implausible : it amounts to the claim that any Turing machine, even

The Church-Turing Thesis 11 53

if its computations exceed polynomial time, is equivalent to a
black box whose computations only require polynomial time .

For that reason, the natural response to the feasibility require-
ment is to revise CT downwards so that it equates effective com-
putability with polynomial Turing-machine computability . But the
black-box formulation of this revised CT comes out looking sus-
piciously like a special case of the original : it says that polynomial
black-box computability equals polynomial Turing-machine com-
putability . In view of the invariance of the major complexity classes
across different models of computation, this formulation of CT
does not look all that different from the original black-box form-
ulation . And as I shall indicate, the new formulation gives rise to
a problem that we do not find in the original .

For on the one hand it is quite easy to design a standard lan-
guage for the description of Turing machines, in such a way that
there is an effective decision procedure for determining whether an
expression in this language is the description of a Turing machine
or not . Similar remarks apply to recursive function expressions,
. -expressions, normal Markov algorithms, and so on . In other
words, the class of entities which CT, in any of its original forms,
associates with the intuitive notion of effective computability, is
itself effectively computable .
On the other hand, by contrast, there does not appear to be any

effective way of identifying those Turing machines which perform
all their non-terminating computations in polynomial time . In other
words, the formal term in the correspondence posited by the
downward-revised CT is itself not amenable to effective determina-
tion . This makes things very awkward from the point of view of
applying the thesis . Currently, if one holds the original form of
the thesis, it is enough to find a Turing machine which computes
a given function for one to be satisfied that that function is com-
putable ; there need never be any doubt that what is offered is a
Turing machine, though admittedly proving that it does what is
claimed for it can be tricky, and is in general recursively unsolvable .
But with the downward-revised version of the thesis, things are
much worse, for now it is, in general, impossible to be sure whether
what is offered is a polynomial-time Turing machine, let alone
that it computes the function in question.

Because of this difficulty, the downward-revised CT which iden-
tifies effective computability with computability by Turing machine

154

	

Antony Galton

in polynomial time has much less to commend it than the original .
The original CT, if we accept it, in effect succeeds in identifying
an effective implementation of black-box computability. The revised
version, on the other hand, does not. Instead, it merely replaces one
specification with another : for it insists that a Turing machine have
polynomial complexity, without providing any implementational
details as to how this can be achieved.

For the downward-revised CT to have more `punch', it would
be necessary that we discover some new construction, which can
be specified and recognized effectively, and which is either exactly
equivalent to the polynomial-time Turing machine, or sufficiently
nearly so to be a satisfactory replacement for it in the revised CT:
at all events, we require some implementational schema which is
guaranteed to produce polynomial computations . As far as I am
aware, no such construction has ever been found, nor is it at all
clear how one might set about looking for one (cf. Gurevich,
1988) . As Minsky (1967, S8.5) says,

Those who object that Church's (or Turing's) thesis . . . allows too much,
usually do so on the grounds that the Turing machine formulation of
computability allows computations whose lengths cannot be bounded in
advance in any reasonable way . The impossibility of computing bounds
. . . is one of the obstacles that seems to stand in the way of finding a
formulation of computability which is weaker yet not completely trivial .
(P . 153) 5
An alternative here would be to shift the focus from computa-

tional mechanisms to computational problems . Our concern, after
all, is to characterize what is or is not computable ; traditionally,
we have done this by defining an abstract model of computation
and then saying that a function is computable if and only if it
can be computed using that model . This is fine so long as we are
not interested in resource bounds ; but as we have seen, it is very
difficult to modify a given abstract computational model in such
a way that the computations it defines have some complexity
bounds specifiable in advance .
The work reported in Stewart (1996) gives ground for hope that

the problem-oriented approach suggested here might meet with more
success than the traditional, mechanism-oriented approach . This
work shows that one can characterize the complexity of problems

s Cf. Rogers (1967, S1 .1) .

The Church-Turing Thesis

W(x) Io if O(x, y) # o for every natural number y,

1 55

in terms of the logical resources needed to specify them . A given
logic Y might correspond to a complexity class of computational
problems T in the sense that a problem belongs to IC if and only
if it can be specified using the logic -T . A resource-bounded formu-
lation of CT might then run something like this : A function is
effectively computable if and only if it can be defined in the logic
Y (where the particular logic T chosen will depend on what com-
plexity of computations one is prepared to countenance as effective) .

io . What about upward conceptual revision? An argument of
Kalmar (1959) appears to fit into this category . Kalmar considers
functions of the form

y if y is the least natural number such that O(x, y) = o

where 0 is general recursive . Kalmar claims that any function of
this form is effectively computable by means of the following
procedure :

Calculate in succession the values 0(p, o), 0(p, r), ¢(p, z), . . . and simul-
taneously try to prove by all correct means that none of them equals o,
until we find either a (least) natural number q for which 0(p, q) = o or a
proof of the proposition stating that no natural number y with ¢(p, y) = o
exists ; and consider in the first case q, in the second case o as result of
the calculation.

Yet Kleene (1936) had shown that some functions V of this form
are not general recursive . It follows that, if CT is correct, then for
suitable 0 and p, none of the numbers 0(p, o), 0(p, i), 0(p, z), . . . is
zero and yet this fact cannot be proved by any correct means.
Rather than accept this `very strange consequence', Kalmar con-
cludes that the totality of `correct means' of proof goes beyond the
realm of the general recursive, thus falsifying CT.
Kalmar is not here postulating the existence of some specific

technique for computing non-general-recursive functions . Rather,
by allowing `any correct means' of proof, he would appear to be
expressing the belief that no particular collection of techniques
can ever be regarded as exhaustive . Only by laying down in advance
what techniques of proof and calculation are allowable does it
appear plausible that the realm of the effectively calculable is limited
to the general recursive functions . There is no reason to suppose

156

	

Antony Galton

that, if arbitrary computational procedures are allowed, this lim-
itation cannot be transcended .

There is certainly something quite attractive about Kalmar's
view, but it has not been widely adopted . It is, in some ways, the
opposite of the position held by Peter, which we discussed above .
Peter felt that the notion of `arbitrary recursive function' was too
general, and that for the computation of a function to be effective
in a way that does not simply beg the question (because of circular-
ity) it must involve some more specific form of recursion ; Kalmdr,
on the other hand, wants to allow `arbitrary correct means' of com-
putation, which he believes can take us beyond the realm of the
general recursive .
Another kind of upward conceptual revision might occur if it

could be shown that the notion of black-box computability we have
been using is too narrow to characterize everything that we should
be prepared to count as a computation. For according to this notion,
a computation takes a single input and delivers a single output,
and moreover, both the space of possible inputs and the space of
possible outputs must be discrete . Only if these conditions are met
can we legitimately think of a computation as computing a function
from the natural numbers to the natural numbers .
Now there are at least two ways in which these conditions

might be regarded as inadequate . On the one hand, one might
seek to relax the requirement that what is computed is a relation
between an initially given input and a final output . On the other
hand, one might want to consider `computations' in which the input
space or output space (or both) is continuous rather than discrete .
And of course, one may well wish to make both of these moves
at the same time . In the next section we will consider the implica-
tions for CT of the first possibility, and in the section after that
we shall consider the implications of the second .

11 . Pnueli (1985) distinguishes two views of computational systems :

The first view regards programs as functions from an initial state to a
final state . . . This view is particularly appropriate for programs that accept
all of their inputs at the beginning of their operation and yield their outputs
at termination . We call such programs transformational . . . On the other
hand, there are systems that cannot be covered by the transformational
view . Some systems, such as operating systems, process control programs,

The Church-Turing Thesis 1 57

seat reservation systems, etc ., ideally never terminate . Moreover, the
purpose for which they are run is not to obtain a final result, but rather
to maintain some interaction with their environment . We refer to such
systems as reactive systems. (pp. 51of.)

Pnueli indicates that the techniques used for reasoning about
transformational programs, e.g . to prove their correctness relative
to some specification, cannot be applied to reactive programs, and
goes on to advocate temporal logic as a suitable tool for reason-
ing about the more complex correctness requirements of the latter
class .
From our point of view, it is necessary to determine whether

reactive programs involve a notion of computation that goes
beyond the kind of computation considered in CT, the kind of com-
putation which, according to CT, can always be performed on a
Turing machine . To this end, let us define a reactive black box. This
does not simply accept an input and, after executing some pro-
cesses hidden from our view, deliver an output; instead, it generates
a (possibly infinite) output stream 0,0 .03 . . . in response to a
(possibly infinite) input stream IILI 3 . . . , with no requirement
that the input be completed before the output begins .
Can we replace a reactive black box by an ordinary (transforma-

tional) black box with the same computational characteristics?
In fact, we can do so quite easily. What we need to do is to see the
reactive black box as computing a function from natural numbers
to natural numbers . Now the class of all possible infinite input
streams is non-denumerable and hence such streams cannot be
replaced by natural numbers in a one-to-one fashion . Instead we
exploit the following monotonicity property of reactive systems :
if the finite input stream I yields the finite output stream O, then
any extension of I must yield an extension of O. This property is a
necessary consequence of the reactive nature of the system, which
cannot know, once it has received input stream I, whether or not
further inputs will arrive, and hence its response must be such as
to be appropriate in either case .
Hence if input stream IjI3 . . . yields output stream 002 03

. . . then the finite input streams I I , I I I ., I I IZ I31 . . . must yield the
finite output streams O� OIO,, 0,02031 . . . , respectively, and
moreover, this denumerably infinite set of finite input-output pairs
uniquely determines the single infinite input-output pair we began
with . Moreover, the set of all finite input-output pairs for the system

158

	

Antony Galton

is denumerable and yet uniquely determines the non-denumerable
set of all infinite input-output pairs . It follows that the complete
behaviour of a reactive system can be specified by a denumerable
set of input-output pairs, and hence can be regarded as computing
a function from the natural numbers to the natural numbers .
A natural objection to this analysis is that a reactive system

will not always respond identically to identical inputs, and hence
the system cannot be considered to be computing a function . Thus
in a certain well-known operating system the output correspond-
ing to the input 'Is' will differ according to the contents of the
current directory . But this is to miss the point . Let us call the state
of the system when it is first installed, before it has performed any
computations at all, the `zero state' . The argument above, which
showed that the reactive black box could be replaced by an equival-
ent transformational one, must be taken as referring to the zero
state of the system . After performing some computations, the re-
active system will, in general, be in a different state from the zero
state . There will, correspondingly, be a different transformational
black box corresponding to the system in this state . That is why
identical inputs received by a reactive system at different times may
yield different outputs : the equivalent transformational systems
at the two times may be different . But this in no way lessens the
force of the original argument.
To conclude this section then, it seems clear that, while reactive

systems are such that they require very different techniques from
a practical point of view, from the point of view of computability
theory they still fall within the terms of reference of what I have
called black-box computability, and hence CT, if it is true, must
apply to reactive systems just as much as to transformational ones .

1 z . The second extension to the notion of computability that we
envisaged was to allow the input and output spaces to be con-
tinuous . A possible motivation for this would be that such an
extension might allow us to regard many physical processes as
computations which would otherwise be hard to describe in this
way .
A major problem facing any attempt to define computations over

continuous spaces arises from the finiteness requirement discussed
in section 6. An effective computation must be completable in a
finite amount of time . We must include in this the time taken to

The Church-Turing Thesis

	

159

enter the input into the black box and to retrieve the output . If the
input and output spaces are to be truly continuous, it is not possible
for the data to be presented digitally, i .e . as strings of symbols
taken from a finite alphabet, for the only way a truly continuous
space can be represented in this way is for us to allow expressions
containing an infinite number of digits (cf. the real numbers).

But if the data are not presented digitally, they must be pre-
sented in an `analogue' way, i .e . by means of some continuously
variable physical quantity . The process of retrieving the output
then becomes one of measurement, and the limitations of this
kind of computation can only be determined by a close considera-
tion of the physical nature of measurement . Fields (1989, and see
p . 168 below) argues that if we accept the nonclassical (quantum
mechanical) conception of measurement then even continuous
systems cannot compute anything that a Turing machine cannot .
This suggests that inclusion of continuous input and output spaces
does not, in fact, take us beyond the class of Turing-machine
computable functions . This conclusion is not contradicted by that
of Deutsch (1985), who claims that his Universal Quantum Com-
puter has `remarkable powers not reproducible by any Turing
machine'-which do not, however, include the computation of
non-recursive functions .

But even apart from this issue, there are reasons to treat
cautiously any proposal to extend the notion of computation to
cover continuous processes . It seems plausible that any physical
system can be regarded in indefinitely many different ways as a
black box which takes input from a continuous space of possibil-
ities and delivers output from a continuous space of possibilities .
On the other hand, to extend our notion of computation so that
anything that happens is a computation reduces the whole enter-
prise to absurdity . It is therefore necessary, if we are to extend CT
so as to encompass computations with continuous input and out-
put, to find a way of specifying what properties a process must
have in order to count as a computation in this sense . A prelim-
inary attempt to do this (Sloman, 1988, and see also his paper in
this volume, pp . 179-z19) suggests that when we start looking at
things in this way, what we will find is not just a single replace-
ment of CT but a whole battery of replacements, corresponding to
different views, all equally legitimate, of what constitutes the essence
of computationality .

16o

	

Antony Galton

13 . I conclude with some remarks concerning the relevance of
CT to artificial intelligence . In view of the difficulty of finding a
satisfactory formulation of CT that encompasses systems whose
input and output form continuous spaces, I shall restrict the dis-
cussion to the discrete input-output case . This is not a restriction
from the point of view of conventional AI, since the tool of this
trade is the digital computer, which does indeed satisfy the discrete-
ness condition . Some, but possibly not all, forms of connectionism
can probably be accommodated under this rubric too. So our terms
of reference are certainly broad enough to be getting along with,
even if we should eventually want to broaden them .
Depending on one's viewpoint, CT might be used either in sup-

port of the thesis that all human cognitive processes can be simu-
lated on a machine, or to argue against it . The two arguments,
both of which are valid, run as follows :

r . A function is black-box computable iff it is Turing-machine
computable .
A human being is a black box .
Therefore, a human being is equivalent to a Turing machine .

z. A function is black-box computable iff it is Turing-machine
computable .
A human being is not a black box .
Therefore, a human being is not equivalent to a Turing
machine .

In both cases, the claim rests on two premisses . The first premiss
in each case is simply CT. The second premiss is, in the first case,
that human beings can be regarded as black boxes in the sense
required by CT; and in the second case, that they cannot . The
crucial question is therefore whether or not we can legitimately
regard a human being as a black box in the sense required by the
black-box formulation of CT.

It need not matter here that human cognition appears to be sep-
arable into a collection of processes each enjoying a certain auto-
nomy. This does not mean that we cannot consider the aggregate
of such functions as a single superprocess representing the total
cognitive activity of a human individual. A collection of black
boxes packed into one big black box can itself be regarded as a
black box . The input to the big black box is in turn fed into one or

The Church-Turing Thesis

	

161

more of the internal black boxes; the eventual output is deter-
mined in some way, either systematic or random, from the output(s)
produced by the internal black boxes .

Nor, as we have seen, is it a serious consideration that people
resemble reactive systems rather than transformational ones .
The crucial issue has rather to do with the functionality of a

human being qua black box . For CT to get any purchase, we must
be dealing with inputs and outputs taken from some denumerable
space of possibilities . Now it is not entirely clear that, for the
human, this is the case . Sensory input, to be sure, may well be in
the last analysis digital, since it is limited by thresholds as regards
both the extent of its range and its resolution power. But cogni-
tion is not a function of sensory input alone . One's thinking is
deeply affected by one moods and feelings, and these depend, in
part, on the state of one's body chemistry, e.g . the concentrations
of various chemicals in the bloodstream, which in turn are
influenced by external non-sensory inputs such as food and air.
A computing mechanism is not specified until its behaviour over

the whole range of predetermined possible inputs is specified . Now,
for a human, what counts as an input, and what counts as an
output? Is the cheese sandwich I had for lunch an input? I don't
just mean the taste and feel of the sandwich: being sensory these
are inputs in the relevant sense, sure enough ; I mean the sandwich
itself . It went into my stomach, some of its molecules are by now
doubtless coursing through my brain : so the food I eat cannot be
wholly separated from my cognitive activities . As Dennett (1 978,
ch . 113) puts it,

we have to decide which of the impingements on the animal count as
input and which as interference, and it is not at all clear what criteria we
should use in deciding this . (p . z6o)

Later, Dennett draws the even more despairing conclusion that

By suitable gerrymandering . . . it ought to be possible to interpret any
man as any Turing machine-indeed as all Turing machines at the same
time . (p . z6z)

which recalls my earlier worries about the infinity of ways of
describing a given physical system as a continuous black box.
Now it may be that these factors can be dismissed as irrelev-

ant . One might, for example, adopt the stance that human cognitive

162

	

Antony Galton

behaviour as we actually observe it must be conceived as a per-
formance which only imperfectly realizes an underlying cognitive
competence, and that it is the latter which is the true object of study
in AI.6 The imperfect transition from competence to performance
can be explained, on this view, as arising from just such messy bio-
chemical considerations as we have already considered . The cheese
sandwich (as opposed to its sensory qualities) is not a cognitively
relevant input, since its effect on my cognitive performance is
incidental, accomplished through biochemical pathways that are
quite disjoint from the mechanisms of cognitive competence.
The opposing view would be that it simply is not possible

to make a clean separation between cognitive and non-cognitive
aspects of human behaviour ; this is argued for fairly persuasively
by French (199o) . It would appear to follow from this (though
French himself does not so argue) that the attempt to account for
human cognition in terms that allow CT to be applied is funda-
mentally misconceived . Thus viewed, human behaviour is simply
the wrong kind of thing to be regarded as computational, not
because it lacks a physical basis, but because its physical basis
resists description in the discrete terms required of CT.

This would be the case if, for example, Deutsch's notion
(mentioned above in section 6) that there need be no exact corre-
spondence between what is computable in the mathematical sense
and what is computable in the physical sense, were correct . In
that case, the physical nature of human behaviour and cognition
would tell against the possibility of simulating it on a machine
whose design is guided by the mathematical notion of computation ;
but it would still leave open the possibility of simulating human
behaviour on a radically different kind of machine, for example a
neural network, or the Universal Quantum Computer discussed by
Deutsch .

All this is relevant to the `strong' AI thesis that the human brain
is a computer, and human cognitive processes are its computations .
It is not very relevant to the business of a more modest brand of
AI, which merely seeks computational ways of performing certain
tasks or solving certain problems which humans are rather good
at but which machines, so far, have done rather badly, if at all . No

6 For the distinction between competence and performance, originally intro-
duced in relation to linguistic behaviour, see Chomsky, 1965 .

The Church-Turing Thesis

	

163

doubt it is the former variety of AI, rather than the latter, that is
more in harmony with Turing's own convictions .

REFERENCES

Chomsky, N. (1965), Aspects of the Theory ofSyntax, Cambridge,
Mass . : MIT Press .

Church, A. (1936), `An Unsolvable Problem of Elementary Num-
ber Theory', American Journal of Mathematics, 58 : 345-63

Dennett, D . C . (1978), Brainstorms : Philosophical Essays on Mind
and Psychology, Hassocks : Harvester Press .

Deutsch, D. (198 5), `Quantum Theory, the Church-Turing Prin-
ciple and the Universal Quantum Computer', Proceedings of the
Royal Society, London A, 400 : 97-117 .

Enderton, H. B. (1977), `Elements of Recursion Theory', in J .
Barwise (ed .), Handbook of Mathematical Logic, Amsterdam :
North-Holland, 527-66 .

Fields, C. (1989), `Consequences of Nonclassical Measurement
for the Algorithmic Description of Continuous Dynamical Sys-
tems', Journal of Experimental and Theoretical AI, 1 : 171-8.

French, R. M. (199o), `Subcognition and the Limits of the Turing
Test', Mind, 99: 53-6 5 and this volume, pp. 1i-26 .

Gandy, R. (1988), `The Confluence of Ideas in 1936', in R .
Herken (ed .), The Universal Turing Machine, Oxford : Oxford
University Press, 55-111 .

G6del, K. (1934) `On Undecidable Propositions of Formal Math-
ematical Systems', in M. Davis (ed.), The Undecidable, New
York: Raven Press, 1965: 41-74.

Gurevich, Y. (1988), `Algorithms in the world of bounded re-
sources', in R . Herken (ed.), The Universal Turing Machine,
Oxford : Oxford University Press, 407-16 .

Harel, D. (1987), Algorithmics : the Spirit of Computing, Reading,
Mass . : Addison-Wesley .

Hermes, H. (1965), Enumerability, Decidability, Computability,
Berlin : Springer Verlay.

Kalmar, L . (1959) `An Argument against the Plausibility of
Church's Thesis', in A . Heyting (ed.), Constructivity in Math-
ematics, Amsterdam : North-Holland, 72-80 .

164

	

Antony Galton

Kleene, S . C . (1936), `General Recursive Functions of Natural
Numbers', Mathematische Annalen, 111: 727-42 .

(1951), Introduction to Metamathematics, Amsterdam :
North-Holland .

(1967), Mathematical Logic, New York : Wiley.
Minsky, M. L . (1967), Computation : Finite and Infinite Machines,
Englewood Cliffs, NJ : Prentice-Hall.

Peter, R. (1959), `Rekursivitat and Konstruktivitdt', in A . Heyting
(ed .), Constructivity in Mathematics, Amsterdam: North-Holland,
zz6-33 .

Pnueli, A . (1985), `Applications of Temporal Logic to the Spe-
cification and Verification of Reactive Systems : A Survey of
Current Trends', in J . W. de Bakker, W.-P . de Roever, and
G. Rozenberg (eds.), Current Trends in Concurrency, Springer :
Lecture Notes in Computer Science 214 .

Rogers, H. (1967), Theory of Recursive Functions and Effective
Computability, New York : McGraw-Hill .

Sloman, A. (1988), `What isn't Computation?', in Proceedings of
the 8th European Conference on Artificial Intelligence, 718-30 .

Stewart, 1 . (1996), `The Demise of the Turing Machine in Com-
plexity Theory', this volume, pp . 2211-31 .

Turing, A. (1936), `On Computable Numbers, with an Applica-
tion to the Entscheidungs-problem', Proceedings of the London
Mathematical Society, Series z, 4z: z3o-65 .

von Neumann, J . (1948), `General and Logical Theory of Auto-
mata', in Cerebral Mechanisms in Behaviour-the Hixon Sym-
posium, New York : John Wiley .

Wang, H. (1 974), From Mathematics to Philosophy, London :
Routledge & Kegan Paul .

Webb, J . C . (1983), `Godel's Theorem and Church's Thesis : A
Prologue to Mechanism', in R . S . Cohen and M. W. Wartofsky
(eds .), Language, Logic, and Method, Dordrecht : Reidel, 309-
53

9
Measurement and Computational

Description
CHRIS FIELDS

INTRODUCTION

The mathematical theory of computation does not directly address
the questions of whether, and if so, how physical processes might
be characterized as computations, or physical systems character-
ized as computers . These questions lie at the heart, however, of
the technology of computer design, and of empirical investigations
in cognitive science, computational neuroscience, and other sciences
concerned with the processing of information . Addressing these
questions requires a theory not of computation per se, but of the
computational description of physical systems . My purposes in
the present paper are, first, to outline a theory of computational
description that is based explicitly on the theory of physical meas-
urement, and, second, to examine some consequences of this theory
for some questions in the philosophy of computer science and
artificial intelligence .
The ubiquity and utility of abstract computational descrip-

tions in cognitive science have been pointed out by a number
of authors, writing from a number of theoretical perspectives (e.g.
Fodor, T974 ; Marr, 1981; Cummins, 1983; Pylyshyn, 1984; Ullman,
x986; Seinowski et al ., 1988). The notion of a virtual machine
developed in computer science (e .g . Tanenbaum, 1976, ch . 1) typ-
ically serves as the starting-point for accounts of computational
description as it is applied to natural systems . Marr (1981, ch. 11),

I thank Eric Dietrich, Stephanie Forrest, and Aaron Sloman for comments on an
earlier draft of this paper . This work was partially supported by NASA Innovative
Research Program grant NAGW-I5gz to the author and J . Barnden .

